Loss of deeply conserved C-class floral homeotic gene function and C- and E-class protein interaction in a double-flowered ranunculid mutant.

نویسندگان

  • Kelsey D Galimba
  • Theadora R Tolkin
  • Alessandra M Sullivan
  • Rainer Melzer
  • Günter Theißen
  • Verónica S Di Stilio
چکیده

In the model plant Arabidopsis thaliana, a core eudicot, the floral homeotic C-class gene AGAMOUS (AG) has a dual role specifying reproductive organ identity and floral meristem determinacy. We conduct a functional analysis of the putative AG ortholog ThtAG1 from the ranunculid Thalictrum thalictroides, a representative of the sister lineage to all other eudicots. Down-regulation of ThtAG1 by virus-induced gene silencing resulted in homeotic conversion of stamens and carpels into sepaloid organs and loss of flower determinacy. Moreover, flowers exhibiting strong silencing of ThtAG1 phenocopied the double-flower ornamental cultivar T. thalictroides 'Double White.' Molecular analysis of 'Double White' ThtAG1 alleles revealed the insertion of a retrotransposon causing either nonsense-mediated decay of transcripts or alternative splicing that results in mutant proteins with K-domain deletions. Biochemical analysis demonstrated that the mutation abolishes protein-protein interactions with the putative E-class protein ThtSEP3. C- and E-class protein heterodimerization is predicted by the floral quartet model, but evidence for the functional importance of this interaction is scarce outside the core eudicots. Our findings therefore corroborate the importance and conservation of the interactions between C- and E-class proteins. This study provides a functional description of a full C-class mutant in a noncore ("basal") eudicot, an ornamental double flower, affecting both organ identity and meristem determinacy. Using complementary forward and reverse genetic approaches, this study demonstrates deep conservation of the dual C-class gene function and of the interactions between C- and E-class proteins predicted by the floral quartet model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UNUSUAL FLORAL ORGANS Controls Meristem Identity and Organ Primordia Fate in Arabidopsis.

A novel gene that is involved in regulating flower initiation and development has been identified in Arabidopsis. This gene has been designated UNUSUAL FLORAL ORGANS (UFO), with five corresponding nuclear recessive alleles designated ufo[middot]1 to ufo[middot]5. Under short day-length conditions, ufo homozygotes generate more coflorescences than do the wild type, and coflorescences often appea...

متن کامل

AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis.

Loss-of-function alleles of AGAMOUS-LIKE24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) revealed that these two similar MADS box genes have opposite functions in controlling the floral transition in Arabidopsis thaliana, with AGL24 functioning as a promoter and SVP as a repressor. AGL24 promotes inflorescence identity, and its expression is downregulated by APETALA1 (AP1) and LEAFY to establish flo...

متن کامل

Isolation and Functional Analyses of a Putative Floral Homeotic C-Function Gene in a Basal Eudicot London Plane Tree (Platanus acerifolia)

The identification of mutants in model plant species has led to the isolation of the floral homeotic function genes that play crucial roles in flower organ specification. However, floral homeotic C-function genes are rarely studied in basal eudicots. Here, we report the isolation and characterization of the AGAMOUS (AG) orthologous gene (PaAG) from a basal eudicot London plane tree (Platanus ac...

متن کامل

The MADS box gene FBP2 is required for SEPALLATA function in petunia.

The ABC model, which was accepted for almost a decade as a paradigm for flower development in angiosperms, has been subjected recently to a significant modification with the introduction of the new class of E-function genes. This function is required for the proper action of the B- and C-class homeotic proteins and is provided in Arabidopsis by the SEPALLATA1/2/3 MADS box transcription factors....

متن کامل

The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro

The organs of a eudicot flower are specified by four functional classes, termed class A, B, C and E, of MADS domain transcription factors. The combinatorial formation of tetrameric complexes, so called 'floral quartets', between these classes is widely believed to represent the molecular basis of floral organ identity specification. As constituents of all complexes, the class E floral homeotic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 34  شماره 

صفحات  -

تاریخ انتشار 2012